
Explaining Eye Movements
in Program Comprehension using jACT-R
Sebastian Lohmeier (sl@monochromata.de) Nele Russwinkel (nele.russwinkel@tu-berlin.de)

Keywords: Eye Movements, Program Comprehenion, Tools, Java, Cohesion, Activation

Model Input from Program Comprehension
• Available knowledge representations are insuffi-

cient when submitting real-world texts to cognitive
models of text comprehension.

• These models have also been used to explain
program comprehension experiments (Burkhardt,
Détienne, & Wiedenbeck, 1997).

• To overcome the lack of representations, we aim
at using source code as a knowledge representa-
tion to model program comprehension.

• Hansen, Lumsdaine, and Goldstone (2012) pro-
posed a goal-directed cognitive model of program
comprehension.

• They aimed at exact generative models of pro-
gramming steps, while we seek a rough recon-
structive model of the comprehension of large
amounts of source code.

• Low activation of knowledge representations in
our model could explain regressive eye move-
ments that indicate comprehension problems.

• We track the eye movements of programmers
while they read source code.

• Afterwards, chunks of conceptual knowledge are
extracted from the source code.

• The model maintains an on-line representation of
meaning by instantiating nodes from conceptual
chunks and by re-activating existing nodes.

• Activation values are computed for conceptual
knowledge and nodes of on-line meaning.

Figure 1: Sample eye movements on source code, a simplified abstract syntax tree (AST) of the code, and chunks in declarative memory generated from the AST

The input to the model is generated as follows.
• Subjects’ fixations are mapped to words in source

code using a plugin for the Eclipse IDE.
• A log containing fixations (incl. word, duration and

location) and saccades (incl. duration) is created.

• The Java parser creates an abstract syntax tree
(AST) when a file of source code is opened.

• The AST provides access to all concepts and re-
lations expressed in the code, e.g. part-whole,
subconcept-of, and is-a.

• Concepts are turned into type chunks, relations
and objects are turned into token chunks.

• Reference potentials are created that combine a
word with an optional link to a type chunk and spa-
tial information that fixations can be assigned to.

Explaining Program Comprehension with jACT-R

●

50 200 350 500 650 800 950 1100 1300 1500 1700 1900 2100 2300 2500

0
2

4
6

8
10

12

Model time (sec)

A
ct

iv
at

io
n

CS#RegistrarLocator.getRegistrarARGSSGRA.return.type−3733
CS#RegistrarLocator.getRegistrarARGSSGRA.public−3730
CS#RegistrarLocator.getRegistrarARGSSGRA−3745
CS#RegistrarLocator.getRegistrarARGSSGRA

1 2 3 4 5 6 7 8 9 10 11 12 13
Regression

0

2

4

6

8

10

12

14

16

18

R
e
g
re

ss
io

n
 d

u
ra

ti
o
n
 (

s)

empirical
generated

Figure 2: Sample time course of activation for chunks from Figure 1 (left) and empirical vs. model-generated regression durations (right)

• A cognitive model is constructed using jACT-
R (http://jact-r.org/), a re-implementation of
ACT-R (Anderson et al., 2004) written in Java.

• The log of fixations and saccades is read by a
REMMA module that re-generates fixation dura-
tions following Salvucci (2001). The module cre-
ates reference potentials for fixated words.

• The reference potentials encoded by the REMMA
module are used by a second module to instan-
tiate new tokens from type nodes and to re-
activating existing token nodes.

• Figure 2 details a model run using the input from
Figure 1. The black line (left) shows the activation
of the token node that represents the return type
of the getRegistrar() method. This token is the first
node retrieved during regression 1 on the right of
Figure 2.

• The model over-estimates regression durations.
• Retrieval errors and retrieval duration of the token

node referred to at the start of the regression does
not explain regressions. Regression paths need to
be examined closer.

• The model is still in an early stage. From 40 min-
utes of eye movements it creates 15,000 chunks
using 9 chunk types and 2 productions.

• Base-level activation and spreading activation in
the model need to be adjusted further.

• We are interested in predicting comprehension dif-
ficulties based on current activation and decay un-
til a future point in time.

• Being based on the Eclipse IDE, the model po-
tentially lends itself to interactive applications of
cognitive modelling.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of mind. Psychological

Review , 111(4), 1036–1060.
Burkhardt, J.-M., Détienne, F., & Wiedenbeck, S. (1997). Mental representations constructed by experts and novices in object-

oriented program comprehension. In S. Howard, J. Hammond, & G. Lingaard (Eds.), Human-computer interaction: INTERACT
’97. London: Chapman & Hall.

Hansen, M. E., Lumsdaine, A., & Goldstone, R. L. (2012). Cognitive architectures: A way forward for the psychology of program-
ming. In Onward! 2012: Proceedings of the ACM international symposium on New ideas, new paradigms, and reflections on
programming and software (pp. 27–37).

Salvucci, D. D. (2001). An integrated model of eye movements and visual encoding. Cognitive Systems Research, 1(4), 201–220.

Acknowledgements and Authors
We thank Anthony Harrison for implementing jACT-R and for
helping us to get started with it.

Sebastian Lohmeier
sl@monochromata.de

TU Berlin
MSc Informatik

Nele Russwinkel
nele.russwinkel
@tu-berlin.de

TU Berlin
degree course FG KMoDyS


